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Abstrad-This paper analyses a particular structural assembly that has two independent inel(­
tensional mechanisms and two independent states of self-stress. It is shown that, for certain values
of a variable bar length. this assembly is a first-order infinitesimal mechanism; and yet it cannot be
stiffened by the imposition of a state of prestress.

1. INTRODUCTION

The classical equilibrium matrix can tell us a lot about the structural characteristics of an
assembly of bars and simple swivel joints, of the kind illustrated in Fig. 2. In particular,
standard matrix techniques can be used to find the four fundamental vector sub·spaces; and
these reveal not only the number m (~ 0) of independent mechanisms and the number s
(~O) of independent states of self-stress, but also the details of the inextensional modes
and self-stress patterns concerned.

All of these calculations are made with respect to the initial geometry of the assembly;
and so they obviously cannot reveal whether mechanisms (when m > 0) are finite-as in a
simple four-bar chain. for example-or merely infinitesimal; or indeed whether infinitesimal
mechanisms are of first- or higher-order. to use terms that we shalt define below.

In many practical problems it is important for the engineer to know, for an assembly
having m > O. what is the order of its mechanisms. Thus, in a recent paper (Calladine and
Pellegrino. 1991a) we set out to devise a general test which would indicate whether or not
the deformation modes of a given assembly were first-order infinitesimal. We started from
the observation that in some assemblies having m > 0 and s = I, the state of self-stress can
impart first-order stiffness to all possible modes. We were interested in generalizing this
route of analysis to cases where s ~ 2; and we produced an algorithm which shows, for a
given assembly, whether it is possible to find a single state of self-stress which imparts first­
order stiffess to all of the mechanisms. If such a state of self·stress does exist, then all of
the mechanisms are indeed of first order. What we did not realize was that although
satisfaction of our test was sufficient to prove that all mechanisms are of first order. it was
not necessary: failure of our test does not rule out the possibility that all mechanisms are
indeed of first order.

Figure I shows a "map" in which the various possible kinds of behaviour which an
assembly may display occupy different regions. Thus. region 0 corresponds to assemblies
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Fig. I. Graphic illustration ofdifferent types or infinitesimal mechanisms. The assembly shown in
Fig. 2 lies in different regions. for different values of J. The algorithm described by Calladine and

Pellegrino (199la) identifies assemblies which belong to region 3.
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Fig. :!. Planar assembly with two independent inextensional mechanisms. fII = :!. and two inde­
pendent states of self-stress. s = 2. Bar 6 has variable length I. It is assumed that bar 6 is always to

the left of joint D.

with finite mechanisms, while regions 2 and 3 together correspond to assemblies having
only first-order infinitesimal mechanisms. The only other possibility, region \, is that an
assembly has higher-than-first-order infinitesimal mechanisms. Our previous test revealed
assemblies in region 3; but it did not reveal assemblies in region 2-of which, at the time,
we knew no examples.

In this paper we clarify the situation by discussing the particular assembly shown in
Fig. 2, which was brought to our attention by Kuznetsov (199Ia). The lengths of all bars
but one arc fixed, but bar 6 has variable length I. Kuznetsov has pointed out that for any
value of 1 other than I or 3 the system shown in Fig. 2 is a first-order infinitesimal
mechanism.

2. GENERAL CASE (/ > OJ

In a previous paper (Calladine and Pellegrino, 1991 a) we have considered a general
assembly with tn independent inextensional mechanisms and s independent states of self­
stress, where m, s and the corresponding sets of independent mechanisms 0 and states of
self-stress T arc found by analysing the equilibrium matrix for the assembly. Let Op be a
general inextensional mechanism and Toc be a general state of self-stress (:x and pare
respectively tn- and s-dimensional vectors of arbitrary parameters). We have shown that
the work W done whcn the asscmbly is prestressed with Toc and then displaced by Op is
given by:

w = IJ/( t p,rnocl)p
1-= I

where P, is the matrix of product-forces which correspond to the state of self-stress i, i.e.
column i ofT.

If we describe a particular assembly as being a "first-order infinitesimal mechanism"
we mean that for all small ps the changcs in length of the bars arc second-order infinitesimal.
If. however, for all but some ps the length changes arc second-order infinitesimal in pbut for
that mechanism or those mechanisms they arc third-order infinitesimal, then the assembly is
described as a "second-order infinitesimal mechanism". Indeed it is possible to find an
assembly which has the characteristics of a first-order inllnitesimal mechanism for all but
one single mechanism which is of second order; in which case the assembly as a whole is
described as bcing ofsecond order. This agrees with Dcllnition 1ofan nth order infinitcsimal
mechanism, where n ~ I, in Tarnai (1989).

In a first-order infinitcsimal mechanism W must be positive for any fJ :f. O. For the
assembly shown in Fig. 2

hence

-I

o
o 0

I I

o 0
-I 0



First-order infinitesimal mechanisms 2121

In our previous paper we have argued that. in order to make W> 0 for any fl #: O.
one needs to find a particular state of self-stress. and hence an %. for which the quadratic
form W is positive definite. This approach assumes that. as in the special and well-studied
case s = I, there should be a single % for the entire family of fl. However. it turns out that
in the example of Fig. 2 with 0 < I < I and with I > 3 there is one IX which makes W > 0
for all fls; but in the range I < I < 3 different IXS are needed to cover the entire range of fls.
Thus. our search for a single IX. following the scheme of our previous paper. leads to the
conclusion that in the range I < 1< 3 there is no state of self-stress which will stiffen the
two-dimensional infinity of inextensional mechanisms; but it is not correct to deduce from
this that the assembly is not a first-order infinitesimal mechanism. An assembly may still
be a first-order infinitesimal mechanism if for any mechanism, fl, there is at least one state
of self-stress, IX. for which W> O.

In this case. an equivalent and more productive approach to the question of the
existence ofa higher-than-first-order mechanism is to seek mechanisms for which W mnishes
for all possible states of self-stress. Thus. for the example of Fig. 2. we can have higher­
than-first-order mechanisms only if both quadratic forms in the expression for W vanish
simultaneously:

-IJ[IIIJ = 00.5 /12[
1.5

[PI /12l _I

[ 1.5 -0.5 J[/1IJ
[It I /12l -0.5 0.5-11/ 112 = O.

(I)

The first equation in the system (I) has the solutions II,/P2 = I, Lregardless of I. while
the second equation has the solutions
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Hence the system has one solution only (viz. {J I = /12) for I = I, and one solution only (viz.
II I = ifJ 2) for I = 3. This calculation indicates that for each of I = 1 and I = 3 there is one
particular higher-than-first-order mechanism. For all other values of I> 0 there are no
solutions to system (I). and therefore the assembly is a first-order infinitesimal mechanism.
This result agrees with Kuznetsov (1991 a) and the above analysis is equivalent to that in
Kuznetsov (199Ib). although it was done independently.

It is interesting to note that the same system ofquadratic equations (I) can be obtained
as two second-order compatibility conditions for the top and bottom parts of the given
linkage. respectively. For example. the second-order compatibility condition for bars I, 2
and 3, which refers to the horizontal components of displacement. may be assembled from
the schematic diagram of second-order displacements shown in Fig. 3. It is

Fig. 3. First- and second-order displacement components of joints A. Band C.
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which coincides with the first equation in the system (I).

3. TWO SPECIAL CASES: I = I. 1= 3

Calladine and Pellegrino (1991 b) have shown that the particular case of an assembly
with I = I is a second-order infinitesimal mechanism, i.e. that the mechanism having
PI = Pz, which is the only mechanism of higher-than-first-order, is actually a second­
order infinitesimal mechanism. This result has been checked independently by means of a
perturbation analysis of strain energy (Salerno, 1990).

We have not studied the case 1= 3 in any detail. The calculation described above
reveals a single mechanism which is higher-than-first-order (viz. PI = !P2), which Kuznetsov
(199Ia) has found to be third-order infinitesimal.

4. CONCLUSIONS

The example described in this paper demonstrates that only some, and not all. as­
semblies with s > I which are first-order-infinitesimal mechanisms can be endowed with
first-order stiffness against all inextensional modes by a single state of self-stress. This
is a crucial consideration for designers of Tensegrity domes. cable nets, etc.. who require
their assemblies to ha ve first-order stiffness in all possible modes.

The condition that W should be a positive definite quadratic form. introduced by
Calladine and Pellegrino (1991 a) is necessary and sutficient for the existence of a single
state of self-stress which stilfens all mechanisms, in which case the assembly is a first-order
infinitesimal mechanism. However, if the test in that paper is not satisfied. the assembly
mayor may not be a first-order infinitesimal mechanism: and to find out if it is higher­
than-first-order, it is necessary to perform further calculations.

A necessary and sullicient condition for an assembly to be a first-order infinitesimal
mechanism is that there is no solution to the system of s quadratic equations: pTp/,OP = 0
where i = I, ... ,s. Indeed. this appears to agree with a suggestion by Kotter: see Section
5 of our previous paper and also Kuznetsov (1991 b).
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